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• Use pump-probe methods to investigate photo-activated chemical systems

• Jonathan has preformed all the computational studies which has been vital for this 
investigation



Solid-state Linkage Isomers

Simple, crystal-engineering approach:

• Use bulky, chelating ancillary fragments

• Photo-inert fragments dominate crystal packing, generating a “reaction cavity”

• Facilitate high conversion whilst reducing crystal strain and fatigue
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Pseudo-steady-state

[Pd(Bu4dien)(NO2)]BPh4

• Crystal irradiated in-situ at λ = 400 nm

• Complete, 100% conversion to metastable
nitrito-ONO isomer below 200 K

[1] L. E. Hatcher, J.M. Skelton, M. R. Warren, C. Stubbs, E. L. da Silva, P. R. Raithby 
CrystEngComm, 2016, 18, 4180-4187

• Fully reversible, with reverse nitrito  nitro
process induced on warming

• Very fast photoconversion MS threshold
temp (“MS limit”) ~ 220 K

Temp / K 
NO2 

Occupancy 
ONO 

Occupancy 

100 0.00 1.00 
200 0.00 1.00 
220 0.71 0.29 
240 1.00 0.00 
250 1.00 0.00 
260 1.00 0.00 

 



Being Predictive

• Combining Arrhenius and JMAK expressions gives expression for ES t1/2

• Extrapolation allows prediction of t1/2 (and hence lifetimes)
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Numerical simulation: predict how isomer ratios evolve under different conditions
Input = kinetic parameters from solid-state kinetic studies
Outputs include: predicted excitation/decay, pseudo-steady-state profiles; pump-probe TR pulse sequences

[1] L. E. Hatcher, J.M. Skelton, M. R. Warren, C. Stubbs, E. L. da Silva, P. R. Raithby 
CrystEngComm, 2016, 18, 4180-4187



Time-resolved Results

Δ hv



Automatic processing

Quick analysis to determine the photo-conversion of each time-bin is crucial to guide the 
next set of experiment
• Images are sorted into time-bins during data collection 
• Diamonds computer cluster was utilised to auto-processed all time-bin simultaneously  

using xia2/DIALS (peak finding, indexing, integration and scaling)
• A series of structure refinement was then automatically completed and statistical 

information output

Plot produced 5 minutes after 
end of collection from the auto-
processing:
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How fast can we go?

• Using Pump-MultiProbe techniques, the Dectris Pilatus is
limited by the image readout time with millisecond time-
resolve at best.

• For a single time-delay the Pilatus can be electronically gated at
200 ns. To accumulate enough intensity may take numerous
hours and would be unrealistic for multiple snapshots along a
reaction pathway.

• Timepix detector is a continuous readout
detector with 25 ns time-resolution.

• Rather than images, the detector records time
and position of each photon as well as the laser
trigger (or pump source) into the data stream.

• The time-resolution or data binning can be
selected in processing.

Tristen/Timepix

Pilatus 300K



Can we go even faster?

PORTO laser Andy Dent and Ann Fitzpatrix

• The PORTO laser provides a tuneable high-repetition rate pulsed 
laser for Diamond beamlines. It is portable and can be installed in 
a suitably equipped experiments hutch within a few days. 

• A wavelength range of 210 nm to 2600 nm can be achieve using 
the OPA. 

• The laser pulse width is 290 fs.

• The variable repetition rate of the laser can be adjusted from a 
single pulse up to 600 KHz, which is greater than the orbit 
frequency of Diamond.

Faster speed required the activation light (pump) to be delivered in a
short time period. Pulsed laser are ideally suited for these
experiments.



How fast can we go?

0

0.2

0.4

0.6

0.8

1

-3 2 7 12 17 22 27 32

1
0

1
 r

ef
le

ct
io

n
 in

te
n

si
ty

time (s) 

time-pix detector 

• Experimental condition can be optimized by monitoring
a single reflections (LED power, temperature, crystal
size etc) before collecting an entire dataset

[Pd(Bu4dien)(NO2)]BPh4



Can we go even faster?
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Photoexciation for AgCu Complex at 10 kHz 

(-3 -5 5 Reflection) 2 µs binning

Each point is composed of the accumulated number of 
counts from 1000 seconds

Ag2Cu2L4 
(L = 2-diphenylphosphino-3-methylindole ligand)

Jarzembska K. N.; et. al., Inorg Chem. 2014, 53(19), 10594–10601.

Time zero
Laser excitation 

(390 nm 140 mW)

In collaboration with Radosław Kamiński
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